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ABSTRACT

Person re-identification (re-id) aims to associate pedestrians
across different camera views. As compared to the still image-
based re-id, video-based re-id provides not only the spatial
information but also the temporal dependency among frames.
Most of the existing works apply the convolutional neural net-
works as a spatial feature extractor and then use backpropaga-
tion through time (BPTT) to train recurrent neural networks
for temporal information. However, the long-term depen-
dency is very hard to learn in RNNs via BPTT due to gra-
dient vanishing or exploding. In the re-id task, the long-term
dependency is quite common since the key information (iden-
tity of the pedestrian) exists most of the time along the given
sequence. Thus, the importance of a frame should not be de-
termined by its position in a sequence, which is usually bi-
ased in state-of-the-art models with RNNs. In this paper, we
argue that long-term dependency can be very important and
propose an unbiased siamese recurrent convolutional neural
network architecture to model and associate pedestrians in a
video. Experimental results on two public datasets demon-
strate the effectiveness of the proposed method.

Index Terms— person re-identification (re-id), unbiased
temporal representation, sparse attentive backtracking, recur-
rent neural networks (RNNs)

1. INTRODUCTION

Associating pedestrians across different camera views, known
as person re-identification (re-id), has created significant in-
terest in the image processing and computer vision communi-
ties. Re-id can be regarded as a promising and useful appli-
cation to assist in many real-world scenarios such as human
tracking, identifying individuals in crowded areas and crimi-
nal investigation [1, 2]. However, this task is still quite chal-
lenging due to variations in lighting conditions, human poses,
occlusions and backgrounds.

In this work, we address the problem of video-based re-id.
Unlike the previous image-based re-id settings, video-based
re-id provides spatial appearance cues to create a more dis-
criminative and robust feature representation. Besides, by us-
ing the sequences of the image frames, temporal information,

such as gait, could also be utilized to distinguish people in
complex situations.

Currently, most of the existing work solves video-based
re-id with convolutional neural networks (CNNs) to extract
the spatial features from each frame and recurrent neural net-
works (RNNs) to model the spatial-temporal correlation am-
ong frames [3, 4, 5]. They use the typical backpropagation
through time (BPTT) to train RNNs. However, RNNs are
well-known of having the vanishing and exploding gradient
problems due to the exponential multiplication over time [6].
Although Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) are proposed to alleviate this problem, it’s
still doubtful how much a fixed-length vector can memorize
over a long sequence. All these limitations result in the diffi-
culty in assigning enough or at least fair credit to the earlier
timesteps in a long sequence, while looking at the entire se-
quence would be considerably better than relying on the last
few frames only. This phenomenon is also common in re-id
tasks. However, the importance of each image frame should
not be biased by its position in the sequence. In this paper,
we emphasize the importance of learning long-term depen-
dencies in re-id, i.e., the global understanding from the entire
sequence helps in associating the identity of a person. We
propose a novel framework to effectively model the temporal
correlations among frames by a sparse attentive backtracking
mechanism [7, 8].

2. RELATED WORK

Re-id approaches mostly fall into two categories: feature rep-
resentations [9, 10, 11] and metric learning [9, 12]. In recent
years, deep learning methods have been successfully used in
this area. Different CNNs [13, 14, 15] have been utilized for
either robust features or learning a joint representation of fea-
tures and similarity from the grouped image pairs or triplets.

For the video-based re-id, researchers put most of the ef-
forts on using the temporal information such as gait [16, 17]
and HOG3D descriptors [18]. Liu et al. [19] align video seg-
ments by using the gait information. More recently, McLaugh-
lin et al. [3] incorporate CNNs and RNNs in a siamese archi-
tecture. The CNNs are used to capture the spatial represen-
tation and then the RNNs is applied to explore the temporal
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information. Lastly, the temporal pooling layer is adopted to
summarize the information. Varior et al. [4] and Zhang et al.
[5] replace the regular RNNs with LSTMs and bi-directional
RNNs, respectively. Xu et al. [20] use a similar architecture
but add one spatial pooling layer to select regions from each
frame, and add another attentive temporal pooling layer to se-
lect informative frames. All of these works first use BPTT
to train RNNs and their variations, and then apply the pool-
ing layer via either mean-pooling [3, 4, 5] or weighted pool-
ing [20]. Thus, the bias is introduced along the time: even
if the earlier frames convey better or more discriminative in-
formation than one in the latter frames, the model will still
be likely memorize more about the latter frames. Inspired by
Rosemary et al. [7], besides using BPTT, we apply sparse
attentive backtracking mechanism to train RNNs to get the
unbiased spatial-temporal representation for pedestrians.

3. APPROACH

In this section, we present our approach for video-based re-id,
as shown in Fig. 1. It consists of two subsequent CNNs and
RNNs in the siamese architecture. Given a video (a sequence
of frames), CNNs are applied to extract the appearance rep-
resentation of each frame independently. RNNs are further
applied to learn the temporal dependency among the frames
and generate a global description for the entire sequence. In-
stead of using the regular BPTT during the training of RNNs,
the sparse attentive backtracking mechanism is leveraged to
obtain better representation, which is unbiased in terms of the
temporal information by capturing long-term dependency, for
each input sequence.

CNN

RNN RNNRNN

Verification LossIdentification Loss

Spatial-Temporal Representation

CNN

RNN RNNRNN

Identification Loss

Spatial-Temporal Representation

Fig. 1. The proposed architecture for video-based re-id

3.1. Spatial representation

As the resolution of given videos are relatively low (128 ×
64) in most cases, we used the similar CNNs structure as
in [3] to learn the spatial representation for each frame of a

video. With higher resolution, we need to include more con-
volutional layers. The input consists of three color channels
and two optical flow channels (horizontal and vertical opti-
cal flow) to encode appearance and motion, respectively. As
shown in Fig. 2, the network consists of three convolutional
+ pooling layers and one fully connected layer. We use the
hyperbolic-tangent (tanh) as the nonlinear activation func-
tion at each layer. To prevent over-fitting, we use the dropout
for the CNNs and RNNs.
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Fig. 2. CNN architecture for spatial representation. For each
convolutional layer, the triplets shown in parenthesis repre-
sents filter size and the number of feature maps. The pooling
window is 2× 2.

3.2. Temporal Representation

RNNs are proposed to model temporal dynamics in sequences
by mapping the input sequence to a fixed-length represen-
tation through hidden units. Given a video sequence X =
{x1, x2, · · · , xT } , we use vi = φ(xi) ∈ Rm to denote the
description extracted by CNNs for the i-th frame, where q is
the dimension of the output layer of CNNs. Then the recur-
rent connections by BPTT illustrated in Fig. 3(a) are defined
as:

ht = tanh(Wvvt +Whht−1) (1)

where ht is the hidden unit (representation) at time t. Wv ∈
Rq×n and Wh ∈ Rn×n are the parameters of RNNs, repre-
sented as the two fully connected layers, and n denotes the
dimension of the hidden states in RNNs.

One can regard the hidden unit ht in RNNs as a mem-
ory of the network which captures the important information
about what happened across all the previous timesteps, i.e.,
h1, · · · , ht−1, thus we can make the decision solely based
on ht. However, it is difficult for RNNs to learn long-term
dependencies with BPTT in most of the real-world applica-
tions since multiplications of Wh over time give rise to the
exponentially increasing or decreasing of related gradients,
which is known as the exploding- or vanishing-gradient prob-
lem in RNNs. Many papers try to alleviate this by only back-
propagate for few frames instead of the whole sequence, which
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Fig. 3. Diagram illustrating the forward pass with BPTT and
sparse attentive backtracking to compute the hidden unit h3.
In (a), the only way that h3 gets the information from h1 is
through h2 . In (b), h3 could selectively choosing any previ-
ous hidden units (h1 and h2) for directly interaction.

further leads to the hidden representation from time T lean
towards last few frames. To address the problem in RNNs
mentioned above, sparse attentive backtracking mechanism is
used in our approach to effectively exploit the information of
the whole sequence and prevent biased representation.

We adapted the sparse attentive backtracking to train the
RNNs [7]. To compute the hidden state at time t, we split the
input into two sources: 1) the hidden unit from last timestep
ht−1 as in standard RNNs and 2) all the hidden units prior to
t as shown in Fig. 3(b). To deal with the variable number of
input in 2), attention mechanism is applied here to generate
a weighted combination of {h1, · · · , ht−1}. A weight [21] is
generated for each timestep prior to t as:

ht = tanh(Wvvt +Whht−1 +Wh̃

t−1∑
i=1

αihi)

αi = wh̃[hi;ht] (2)

where Wh̃ ∈ Rn×n and wh̃ ∈ R2n.
As described above, the sparse attentive backtracking mech-

anism explicitly model the correlation between the current
hidden unit and all former hidden units to capture the long
term dependency along the sequence. In video-based re-id
task, the output of the last hidden unit is used as the final
spatial-temporal representation of the given video.

3.3. Training Strategy

The objective of training is to minimize the loss of the joint
identification and verification [3, 22]. Given a pair of videos
of pedestrians i and j, we apply the siamese neural networks
to get the spatial-temporal representations fi for i and fj for
j, respectively. We take the Euclidean distance to measure the
similarity between the video pairs. The closer the distance is,

the more similar the videos are. Thus, the verification loss
V (fi, fj) is defined as:

V (fi, fj) =

{
||fi − fj ||2 i = j
max{0,m− ||fi − fj ||2} i 6= j

(3)

where ||fi − fj ||2 represents the Euclidean distance be-
tween two features, andm is the margin that separates the fea-
tures of different pedestrians. When i = j, the two sequences
indicate the same person and we push the two features to be
close. On the contrary, When i 6= j, the video pairs belong
to different persons and we pull the features away. Then, we
use the cross-entropy loss to predict the identity of the person.
The identification cost I(fi) is computed as follows:

I(fi) = P (y = k|i) = exp(Wkfi)∑P
p=1 exp(Wpfi)

(4)

where y is the identity of the person, W is the softmax matrix
with Wk and Wp referring to the kth and pth column of W
respectively. P is the total number of the training identities.
Finally, the overall training objective is to simultaneously op-
timize the joint identification and verification loss as:

L(fi, fj) = V (fi, fj) + I(fi) + I(fj) (5)

Here we assign equal weights to the siamese loss and the
identification loss. We train the whole architecture end to end
with the sparse attentive backtracking method. For testing,
we discard both siamese loss and identification loss functions,
and use the network as a feature extractor and measure the
similarity with Euclidean distance.

4. EXPERIMENTS

We evaluate the proposed approach on two of the most popu-
lar public datasets: iLIDS-VID [18] and PRID 2011 [23]. We
compare our method with state-of-the-art methods especially
those focusing on the spatial-temporal representations.

4.1. Datasets

The iLIDS-VID dataset consists of 300 persons. Each person
is represented by two sequences taken by two non-overlapping
cameras at an airport arrival hall. The length of these videos
range from 23 to 192 with an average of 73. This dataset is
very challenging due to the lighting and viewpoint variations,
high clothing similarities among pedestrians, complex back-
ground and occlusions.

The PRID 2011 dataset contains 749 persons captured by
two non-overlapping cameras, and only the first 200 persons
are captured by both cameras. Their sequence lengths vary
from 5 to 675, with an average of 100 frames. Compared
with the iLIDS-VID dataset, this dataset has relatively sim-
ple background and rare occlusions, and thus becomes less
challenging.
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4.2. Experimental Setup

For each dataset, we randomly split it into training set and
testing set with equal size. With different splits, the experi-
ments are repeated 10 times. To evaluate the performance, for
each test sequence, we compute its Euclidean distance against
each video in the gallery and get the top nmost-similar identi-
ties. The average of the Cumulative Matching Characteristics
(CMC) plot is reported.

To train the Siamese network, we set the hinge margin of
similarity to 2. In order to increase the diversity of the data,
we randomly crop and flip each frame of videos in both the
training and the testing settings to augment the data. For the
fairness of comparison with [3, 5], we fix the length of the
testing sequence to be 128. We set the initial learning rate to
1e − 3, momentum of 0.9, dropout rate of 0.6, and the total
number of epochs to be 1000.

4.3. Experimental Results and Discussion

We compare the performance of our proposed models with
the following state-of-the art methods: Recurrent Convolu-
tional Neural Networks (RCNN) [3], Bidirectional Recurrent
Convolutional Neural Networks (BRCNN) [5], Jointly Atten-
tive Spatial-Temporal Pooling Network (ASPTN) [20], A two
stream siamese CNN (TSC) [24], and Temporally Aligned
Pooling Representation (TAPR) [25] . In Table 1 and Table 2,
we show the recognition rates at rank 1, 5, 10 and 20 respec-
tively for both datasets.

Methods r=1 r=5 r=10 r=20
Ours (UTRCNN) 62.7 ±0.37 86 93.6 98

RCNN [3] 58 84 91 96
BRCNN [5] 55.3 85 91.7 95.1
ASPTN [20] 62 86 94 98

TSC [24] 60 86 93 97
TAPR [25] 55 87.5 93.8 97.2

Table 1. Comparison of the recognition rates at different
ranks (%) on iLIDS-VID dataset. The first row shows per-
formances for our Unbiased-Time RCNN (UTRCNN). The
standard deviation value is along with the average rank one
recognition rate. For each rank, the highest recognition rate is
bold.

Methods r=1 r=5 r=10 r=20
Ours (UTRCNN) 73 ±0.41 92.7 95 98

RCNN [3] 70 90 95 97
BRCNN [5] 72.8 92 95.1 97.6
ASPTN [20] 77 95 99 99

TSC [24] 78 94 97 99
TAPR[25] 68.6 94.6 97.3 98.9

Table 2. Comparison of recognition rates at different ranks
(%) on PRID 2011 dataset.

Frame 1 Frame 5 Frame 9 Frame 12 Frame 16

Fig. 4. The training sequences of one successful instance in
our UTRCNN model .

We achieve rank 1 recognition rates of 62.7% and 73.2%,
with the improvement 8.1% and 4.2% compared to RCNN [3]
with BPTT for iLIDS-VID dataset and PRID 2011 dataset,
respectively. This means that using attentive backtracking
mechanism to train RNN outperforms the standard BPTT in
the video-based re-id task. We illustrate this by one example
shown in Fig. 4. The RCNN fails because it is biased by the
last few frames with BPTT. The red suitcase and the appear-
ance of another man lead to an incorrect representation. On
the other hand, our method explicitly use attentions to select
the important frames to capture the better representation.

In particular, our rank 1 identification rate outperforms all
the other compared methods in the iLIDS-VID dataset but get
a fair performance on the PRID 2011 dataset. If we exam-
ine the two datasets, the iLIDS-VID dataset includes more
occlusions and complex backgrounds. It is more suitable to
learn the long-term dependency for a more complete and un-
biased representation than to rely on the last few frames via
BPTT in iLIDS-VID dataset. For PRID 2011 dataset, we still
achieve improvement compared to RCNN and BRCNN meth-
ods which use the similar architecture.

5. CONCLUSION

In this paper, we proposed an unbiased siamese recurrent con-
volutional neural network architecture for video-based person
re-identification task. Different from existing works, we ap-
ply sparse attentive backtracking mechanism, instead of typ-
ical BPTT, during the training of RNNs. This allows us to
model long term dependencies and learn an unbiased tempo-
ral representation of any given video.
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